Larval crowding accelerates C. elegans development and reduces lifespan
نویسندگان
چکیده
Environmental conditions experienced during animal development are thought to have sustained impact on maturation and adult lifespan. Here we show that in the model organism C. elegans developmental rate and adult lifespan depend on larval population density, and that this effect is mediated by excreted small molecules. By using the time point of first egg laying as a marker for full maturity, we found that wildtype hermaphrodites raised under high density conditions developed significantly faster than animals raised in isolation. Population density-dependent acceleration of development (Pdda) was dramatically enhanced in fatty acid β-oxidation mutants that are defective in the biosynthesis of ascarosides, small-molecule signals that induce developmental diapause. In contrast, Pdda is abolished by synthetic ascarosides and steroidal ligands of the nuclear hormone receptor DAF-12. We show that neither ascarosides nor any known steroid hormones are required for Pdda and that another chemical signal mediates this phenotype, in part via the nuclear hormone receptor NHR-8. Our results demonstrate that C. elegans development is regulated by a push-pull mechanism, based on two antagonistic chemical signals: chemosensation of ascarosides slows down development, whereas population-density dependent accumulation of a different chemical signal accelerates development. We further show that the effects of high larval population density persist through adulthood, as C. elegans larvae raised at high densities exhibit significantly reduced adult lifespan and respond differently to exogenous chemical signals compared to larvae raised at low densities, independent of density during adulthood. Our results demonstrate how inter-organismal signaling during development regulates reproductive maturation and longevity.
منابع مشابه
Lifespan Extension Induced by Caffeine in Caenorhabditis elegans is Partially Dependent on Adenosine Signaling
Caffeine is a widely used psychoactive substance. Studies have shown that caffeine may play a protective role in aging-associated disorders. However, the mechanisms by which caffeine modulates aging are not yet clear. In this study, we have shown that caffeine increases Caenorhabditis elegans lifespan, delays its larval development, reduces reproduction and body length. These phenotypes were pa...
متن کاملDetermination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans
Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...
متن کاملCharacterization of N-Acyl Phosphatidylethanolamine-Specific Phospholipase-D Isoforms in the Nematode Caenorhabditis elegans
N-acylethanolamines are an important class of lipid signaling molecules found in many species, including the nematode Caenorhabditis elegans (C. elegans) where they are involved in development and adult lifespan. In mammals, the relative activity of the biosynthetic enzyme N-acyl phosphatidylethanolamine-specific phospholipase-D and the hydrolytic enzyme fatty acid amide hydrolase determine N-a...
متن کاملApical sensory neurones mediate developmental retardation induced by conspecific environmental stimuli in freshwater pulmonate snails.
Freshwater pond snails Helisoma trivolvis and Lymnaea stagnalis undergo larval development and metamorphosis inside egg capsules. We report that their development is permanently under slight tonic inhibitory influence of the anterior sensory monoaminergic neurones, which are the remnants of the apical sensory organ. Conspecific juvenile snails, when reared under conditions of starvation and cro...
متن کاملCorrection: Relationship Between Mitochondrial Electron Transport Chain Dysfunction, Development and Life Extension in Caenorhabditis elegans
Prior studies have shown that disruption of mitochondrial electron transport chain (ETC) function in the nematode Caenorhabditis elegans can result in life extension. Counter to these findings, many mutations that disrupt ETC function in humans are known to be pathologically life-shortening. In this study, we have undertaken the first formal investigation of the role of partial mitochondrial ET...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017